AI Boosts Diagnosis, Prognosis of Oral Malignant Disorders

Xia & He Publishing Inc.

Oral cancer remains a serious global health concern due to its high morbidity and mortality rates, primarily caused by late-stage diagnosis. The presence of oral potentially malignant disorders (OPMDs) provides an opportunity for early intervention, as these lesions precede the development of oral squamous cell carcinoma. However, the accurate detection and classification of OPMDs remain challenging due to their diverse clinical presentations. Conventional diagnostic methods, including visual examination and histopathological analysis, have limitations such as subjectivity, invasiveness, and high dependency on expert interpretation. In recent years, artificial intelligence (AI) and deep learning (DL) have emerged as promising tools in medical imaging, offering automated, objective, and efficient diagnostic capabilities.

Deep Learning in the Diagnosis of OPMDs

Various deep learning models, particularly convolutional neural networks (CNNs), have been applied to different imaging modalities to improve the diagnosis of OPMDs. These models have demonstrated expert-level accuracy in detecting and classifying OPMDs using clinical photographic images, autofluorescence images, exfoliative cytology, histopathology, and optical coherence tomography (OCT) images.

  • Clinical Photographic Images: Deep learning algorithms such as DenseNet-169, ResNet-101, and EfficientNet-b4 have been employed to analyze clinical photographs of oral lesions. Studies indicate that these models can distinguish OPMDs from benign lesions and oral cancer with sensitivity and specificity comparable to expert clinicians. The use of smartphone-based imaging and DL models is particularly promising for resource-limited settings.
  • Autofluorescence Imaging: Autofluorescence imaging, which highlights biochemical changes in oral tissues, has been enhanced by AI-based analysis. Deep learning models trained on autofluorescence spectra can differentiate between normal mucosa, OPMDs, and malignant lesions, improving diagnostic accuracy.
  • Exfoliative Cytology: AI-assisted analysis of exfoliative cytology images has been explored as a noninvasive and cost-effective diagnostic tool. CNN-based models have shown high sensitivity and specificity in identifying cytological abnormalities associated with malignant transformation.
  • Histopathological Analysis: Pathological examination remains the gold standard for diagnosing OPMDs. Deep learning algorithms can automate the identification of dysplastic features in histological images, improving consistency and reducing interobserver variability. Segmentation models such as Mask R-CNN have been particularly effective in identifying nuclear changes indicative of malignant potential.
  • Optical Coherence Tomography (OCT): OCT provides high-resolution, real-time imaging of oral tissues, facilitating early detection of dysplastic and malignant changes. AI-based models have been trained to analyze OCT images, achieving diagnostic accuracy comparable to pathologists.

Deep Learning in Prognostic Prediction of OPMDs

Beyond diagnosis, AI models are being utilized to predict the likelihood of malignant transformation in OPMDs. Machine learning techniques, including random forest classifiers and survival models such as DeepSurv, have been used to integrate clinical, histopathological, and imaging data to assess cancer risk. These models provide individualized risk assessments, aiding in clinical decision-making and patient management.

Challenges and Future Directions

Despite its potential, the application of deep learning in OPMD diagnosis and prognosis faces several challenges. These include the need for large, standardized image datasets, variability in image quality, and algorithm limitations such as overfitting and interpretability issues. Future research should focus on developing multimodal AI systems that integrate imaging, molecular, and clinical data for more accurate and personalized diagnosis and prognosis of OPMDs.

Conclusion

Deep learning has demonstrated significant potential in improving the diagnosis and prognosis of OPMDs through various imaging modalities. AI-driven approaches offer a noninvasive, cost-effective, and objective means to enhance early detection, ultimately improving patient outcomes. As AI technology continues to advance, its integration into clinical workflows may revolutionize the management of OPMDs and oral cancer prevention.

Full text

https://www.xiahepublishing.com/2835-3315/CSP-2024-00025

The study was recently published in the Cancer Screening and Prevention .

Cancer Screening and Prevention (CSP) publishes high-quality research and review articles related to cancer screening and prevention. It aims to provide a platform for studies that develop innovative and creative strategies and precise models for screening, early detection, and prevention of various cancers. Studies on the integration of precision cancer prevention multiomics where cancer screening, early detection and prevention regimens can precisely reflect the risk of cancer from dissected genomic and environmental parameters are particularly welcome.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.