Body Of Knowledge

Massachusetts Institute of Technology

Inside MIT's Zesiger Sports and Fitness Center, on the springy blue mat of the gymnastics room, an unconventional anatomy lesson unfolded during an October meeting of class STS.024/CMS.524 ( Thinking on Your Feet: Dance as a Learning Science ).

Supported by a grant from the MIT Center for Art, Science & Technology (CAST), Thinking on Your Feet was developed and offered for the first time in Fall 2024 by Jennifer S. Light , the Bern Dibner Professor of the History of Science and Technology and a professor of Urban Studies and Planning. Light's vision for the class included a varied lineup of guest instructors. During the last week of October, she handed the reins to Middlebury College Professor Emerita Andrea Olsen, whose expertise bridges dance and science.

Olsen organized the class into small groups. Placing hands on each other's shoulders conga-line style, participants shuffled across the mat personifying the layers of the nervous system as Olsen had just explained them: the supportive spinal cord and bossy brain of the central nervous system; the sympathetic nervous system responsible for fight-or-flight and its laid-back parasympathetic counterpart; and the literal "gut feelings" of the enteric nervous system. The groups giggled and stumbled as they attempted to stay in character and coordinate their movements.

Unusual as this exercise was, it perfectly suited a class dedicated to movement as a tool for teaching and learning. One of the class's introductory readings, an excerpt from Annie Murphy Paul's book "The Extended Mind," suggests why this was a more effective primer on the nervous system than a standard lecture: "Our memory for what we have heard is remarkably weak. Our memory for what we have done, however - for physical actions we have undertaken - is much more robust."

Thinking on Your Feet: Dance as a Learning Science

Video: MIT SHASS

Head-to-toe education

Thinking on Your Feet is the third course spun out from Light's Project on Embodied Education (the other two, developed in collaboration with MIT Director of Physical Education and Wellness Carrie Sampson Moore, examine the history of exercise in relation to schools and medicine, respectively). A historian of science and technology and historian of education for much of her career, Light refocused her scholarship on movement and learning after she'd begun training at Somerville's Esh Circus Arts to counteract the stress of serving as department head. During her sabbatical a few years later, as part of Esh's pre-professional program for aspiring acrobats, she took a series of dance classes spanning genres from ballet to hip-hop to Afro modern.

"I started playing with the idea that this is experiential learning - could I bring something like this back to MIT?" she recalls. "There's a ton of interesting contemporary scientific research on cognition and learning as not just neck-up processes, but whole-body processes."

Thinking on Your Feet provides an overview of recent scientific studies indicating the surprising extent to which physical activity enhances attention, memory, executive function, and other aspects of mental acuity. Other readings consider dance's role in the transmission of knowledge throughout human history - from the Native Hawaiian tradition of hula to early forms of ballet in European courts - and describe the ways movement-based instruction can engage underserved populations and neurodiverse learners.

"You can argue for embodied learning on so many dimensions," says Light. "I want my students to understand that what they've been taught about learning is only part of the story, and that contemporary science, ancient wisdom, and non-Western traditions all have a lot to tell us about how we might rethink education to maximize the benefits for all different kinds of students."

Learning to dance

If you scan the new class's syllabus, you're unlikely to miss the word "fun." It appears twice - bolded, in all caps, and garnished by an exclamation point.

"I'm trying to bring a playful, experimental, 'you don't have to be perfect, just be creative' vibe," says Light. A dance background is not a prerequisite. The 18 students who registered this fall ranged from experienced dancers to novices.

"I initially took this class just to fulfill my arts requirement," admits junior physics major Matson Garza, one of the latter group. He was surprised at how much he enjoyed it. "I have an interest in physics education, and I've found that beyond introductory courses it's often lacking intuition. Integrating movement may be one way to solve this problem."

Similarly, second-year biological engineering major Annabel Tiong found her entry point through an interest in hands-on education, deepened after volunteering with a program that aims to spark curiosity about health-care careers by engaging kids in medical simulations. "While I don't have an extensive background in dance," she says, "I was curious how dance, with its free-form and creative nature, could be used to teach STEM topics that appear to be quite concrete and technical."

To build on each Tuesday's lectures and discussions, Thursday "lab" sessions focused on overcoming inhibitions, teaching different styles of movement, and connecting dance with academic content. McKersin of Lakaï Arts, a lecturer in dance for the MIT Music and Theater Arts section, led a lab on Haitian harvest dances; Guy Steele PhD '80 and Clark Baker SM '80 of the MIT Tech Squares club provided an intro to square dancing and some of its connections to math and programming. Light invited some of her own dance instructors from the circus community, including Johnny Blazes, who specializes (according to their website) in working with "people who have been told implicitly and explicitly that they don't belong in movement and fitness spaces." Another, Reba Rosenberg, led the students through basic partner acrobatics that Light says did wonders for the class's sense of confidence and community.

"Afterwards, several students asked, 'Could we do this again?'" remembers Light. "None of them thought they could do the thing that by the end of class they were able to do: balance on each other, stand on each other. You can imagine how the need to physically trust someone with your safety yields incredible benefits when we're back in the classroom."

Dancing to learn

The culmination of Thinking on Your Feet - a final project constituting 40 percent of students' grades - required each student to create a dance-based lesson plan on a STEM topic of their choice. Students were exposed throughout the semester to examples of such pedagogy. Olsen's nervous-system parade was one. Others came courtesy of Lewis Hou of Science Ceilidh, an organization that uses Scottish highland dance to illustrate concepts across the natural and physical sciences, and MIT alumna Yamilée Toussaint '08, whose nonprofit STEM from Dance helps young women of color create performances with technical components.

As a stepping stone, Light had planned a midterm assignment asking students to adapt existing choreography. But her students surprised her by wanting to jump directly into creating their own dances from scratch. Those first forays weren't elaborate, but Light was impressed enough by their efforts that she plans to amend the syllabus accordingly.

"One group was doing differential calculus and imagining the floor as a graph," she recalls, "having dancers think about where they were in relation to each other." Another group, comprising members of the MIT Ballroom Dance team, choreographed the computer science concept of pipelined processors. "They were giving commands to each other like 'load' and 'execute' and 'write back,'" Light says. "The beauty of this is that the students could offer each other feedback on the technical piece of it. Like, 'OK, I see that you're trying to explain a clock cycle. Maybe try to do it this way."

Among the pipelined processing team was senior Kateryna Morhun, a competitive ballroom dancer since age 4 who is earning her degree in artificial intelligence and decision-making. "We wanted to challenge ourselves to teach a specialized, more technical topic that isn't usually a target of embodied learning initiatives," Morhun says.

How useful can dance really be in teaching advanced academic content? This was a lively topic of debate among the Thinking on Your Feet cohort. It's a question Light intends to investigate further with mechanical engineering lecturer Benita Comeau, who audited the class and offered a lab exploring the connections among dance, physics, and martial arts.

"This class sparked many ideas for me, across multiple subject matters and movement styles," says Comeau. "As an example, the square dance class reminded me of the symmetry groups that are used to describe molecular symmetry in chemistry, and it occurred to me that students could move through symmetry groups and learn about chirality" - a geometric property relevant to numerous branches of science.

For their final presentation, Garza and Tiong's group tackled substitution mechanisms, a topic from organic chemistry ("notoriously viewed as a very difficult and dreaded class," according to their write-up). Their lesson plan specified that learners would first need to familiarize themselves with key points through conventional readings and discussion. But then, to bring that material alive, groups of learners representing atoms would take the floor. One, portraying a central carbon atom, would hold out an arm indicating readiness to accept an electron. Another would stand to the side with two balls representing electrons, bonded by a ribbon. Others would rotate in a predetermined order around the central carbon to portray a model's initial stereochemistry. And so a dance would begin: a three-dimensional, human-scale visualization of a complex chemical process.

The group was asked to summarize what they hoped learners would discover through their dance. "Chemistry is very dynamic!" they wrote. "It's not mixing chemicals to magically make new ones - it's a dynamic process of collision, bonding, and molecule-breaking that causes some structures to vanish and others to appear."

In addition to evaluating the impact of movement in her classes in collaboration with Raechel Soicher from the MIT Teaching + Learning Lab, Light is working on a book about how modern science has rediscovered the ancient wisdom of embodied learning. She hopes her class will kick off a conversation at MIT about incorporating such movement-assisted insights into the educational practices of the future. In fact, she believes MIT's heritage of innovative pedagogy makes it ripe for these explorations.

As her syllabus puts it: "For all of us, as part of the MIT community, this class invites us to reconsider how our 'mind and hand' approach to experiential learning - a product of the 19th century - might be expanded to 'mind and body' for the 21st century."

/University Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.