Brain-computer interface creates text on screen by decoding brain signals associated with handwriting

Using a brain-computer interface, a clinical trial participant was able to create text on a computer at a rate of 90 characters per minute just by thinking about the movements involved in writing by hand.

PROVIDENCE, R.I. [Brown University] - Scientists with the BrainGate research collaborative have, for the first time, used an implanted sensor to record the brain signals associated with handwriting and used those signals to create text on a computer in real time.

In a study published in the journal Nature, a clinical trial participant with cervical spinal cord injury used the system to "type" words on a computer at a rate of 90 characters per minute, more than double the previous record for typing with a brain-computer interface. This was done by the participant merely thinking about the hand motions involved in creating written letters.

The research team is hopeful that such a system could one day help to restore people's ability to communicate following paralysis caused by injury or illness.

The new study is part of the BrainGate clinical trial, directed by Dr. Leigh Hochberg. Hochberg is a critical care neurologist and a professor at Brown University's School of Engineering affiliated with the University's Carney Institute for Brain Science. Frank Willett, a research scientist at Stanford University and the Howard Hughes Medical Institute (HHMI), led the study, which was supervised by Krishna Shenoy, a Stanford professor and HHMI investigator, and Dr. Jaimie Henderson, a professor of neurosurgery at Stanford.

"An important mission of our BrainGate consortium research is to restore rapid, intuitive communication for people with severe speech or motor impairments," said Hochberg, who also directs the Center for Neurotechnology and Neurorecovery at Massachusetts General Hospital and the V.A. Rehabilitation Research and Development Center for Neurorestoration and Neurotechnology at the Veterans Affairs Providence Healthcare System. "Frank's demonstration of fast, accurate neural decoding of handwriting marks an exciting new chapter in the development of clinically useful neurotechnologies."

The BrainGate collaboration has been working for several years on systems that enable people to generate text through direct brain control. Previous incarnations have involved trial participants thinking about the motions involved in pointing to and clicking letters on a virtual keyboard. That system enabled one participant to type 40 characters per minute, which was the previous record speed.

For this latest study, the team wanted to find out if asking a participant to think about motions involved in writing letters and words by hand would be faster.

"We want to find new ways of letting people communicate faster," Willett said. "This new system uses both the rich neural activity recorded by intracortical electrodes and the power of language models that, when applied to the neurally decoded letters, can create rapid and accurate text."

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.