(May 13, 2024) Severe traumatic brain injury (TBI) is a major cause of hospitalizations and deaths around the world, affecting more than five million people each year. Predicting outcomes following a brain injury can be challenging, yet families are asked to make decisions about continuing or withdrawing life-sustaining treatment within days of injury.
In a new study, Mass General Brigham investigators analyzed potential clinical outcomes for TBI patients enrolled in the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study for whom life support was withdrawn. The investigators found that some patients for whom life support was withdrawn may have survived and recovered some level of independence a few months after injury. These findings suggest that delaying decisions on withdrawing life support might be beneficial for some patients.
Families are often asked to make decisions to withdraw life support measures, such as mechanical breathing, within 72 hours of a brain injury. Information relayed by physicians suggesting a poor neurologic prognosis is the most common reason families opt for withdrawing life support measures. However, there are currently no medical guidelines or precise algorithms that determine which patients with severe TBI are likely to recover.
Using data collected over a 7.5-year period on 1,392 TBI patients in intensive care units at 18 United States trauma centers, the researchers created a mathematical model to calculate the likelihood of withdrawal of life-sustaining treatment, based on properties like demographics, socioeconomic factors and injury characteristics. Then, they paired individuals for whom life-sustaining treatment was not withdrawn (WLST-) to individuals with similar model scores, but for whom life-sustaining treatment was withdrawn (WLST+).
Based on follow-up of their WLST- paired counterparts, the estimated six-month outcomes for a substantial proportion of the WLST+ group was either death or recovery of at least some independence in daily activities. Of survivors, more than 40 percent of the WLST- group recovered at least some independence. In addition, the research team found that remaining in a vegetative state was an unlikely outcome by six-months after injury. Importantly, none of the patients who died in this study were pronounced brain dead, and thus the results are not applicable to brain death.
According to the authors, the findings suggest there is a cyclical, self-fulfilling prophecy taking place: Clinicians assume patients will do poorly based on outcomes data. This assumption results in withdrawal of life support, which in turn increases poor outcomes rates and leads to even more decisions to withdraw life support.
The authors suggest that further studies involving larger sample sizes that allow for more precise matching of WLST+ and WLST- cohorts are needed to understand variable recovery trajectories for patients who sustain traumatic brain injuries.
"Our findings support a more cautious approach to making early decisions on withdrawal of life support," said corresponding author Yelena Bodien, PhD, of the Department of Neurology's Center for Neurotechnology and Neurorecovery at Massachusetts General Hospital and of the Spaulding-Harvard Traumatic Brain Injury Model Systems. "Traumatic brain injury is a chronic condition that requires long term follow-ups to understand patient outcomes. Delaying decisions regarding life support may be warranted to better identify patients whose condition may improve."