Bright Future Ahead for Colorful Electrochromic Devices

Tsinghua University Press

Vivid displays, enriched color variations and boosted stability are something everyone can look forward to encountering as advances are made in the electrochromic device (ECD) field

Electrochromic devices (ECDs) are useful in controlling optical properties such as reflection and absorption and are particularly pertinent when it comes to use in smart windows, rearview mirrors and adaptive camouflage. Unfortunately, the widely used electrochromic materials show a lackluster display with minimal color changes and poor cycling stability, often only transforming between transparency and a single color with sluggish switching speeds. This study shows the use of a more compatible component in the form of a highly porous tin oxide (SnO2) nanosheet scaffold, which provides better cycling, more color variations and a seamless performance than what the current technology has to offer.

Researchers published their work in Nano Research on September 13.

"We have demonstrated a general strategy to boost the cycling stability and optical modulation of typical electrochromic materials (e.g., PANI, V2O5, WO3) by introducing a nanostructured SnO2 nanosheet scaffold between active electrochromic materials and the conducting substrates," said Guofa Cai, researcher and author of the study.

The typical electrochromic materials used now are polyalanine (PANI) and vanadium pentoxide (V2O5) but these materials aren't ideal due to their poor adhesion to the substrate they are mounted upon, amongst other issues leading to poor cycling stability and limited color range. Incompatible layers in the "sandwich" style composition of the five functional layers comprising an ECD are the starting point for creating a better product more capable of vivid coloration in the displays and long-lasting stability when cycling between coloring or bleaching.

"The porous SnO2 scaffold enlarges the electrochemical active area and facilitates the diffusion of ions, thereby enhancing the electrochromic properties of the composite films," said Cai.

By introducing a nanostructured scaffold between the substrate layer and active electrochromic components, a better heterostructure is achieved. This is thanks to the increased porosity of the SnO2 nanosheet scaffold which allows for better transportation of ions between the layers, as well as the improved adhesion ability. These changes, which may seem small, have quite an effect on the overall performances of ECDs when comparing the same electrochromic materials with and without the SnO2 nanosheet scaffold.

The SnO2 scaffold improved color changes in the composite electrode V2O5 and the optical modulation of WO3 (tungsten trioxide) by 16%. Moreover, the optical cycling stability also showed improvement: both WO3 and V2O5 lasted over 2000 cycles with SnO2, and without only lasted around 300 and 1300 cycles, respectively. This is a significant difference, especially for technologies that might cycle from colors and opacity multiple times per day or even per hour, like in windows or electronic displays.

The use of typical metal oxides or conducting polymers as active electrochromic materials, along with the tin oxide nanosheet scaffold, are what allow for such rich color variations that haven't been seen before this research. Going forward, a wider array of exciting and varying colors may be in store for ECDs. This can improve the appearance and performance of emerging electrochromic devices such as e-paper, smart windows, and electronic displays, and might reduce waste later down the line when ECDs using more "traditional" compositions fail to cycle appropriately and have to be replaced.

The future of electrochromic devices using SnO2 as a scaffold is a bright one, and the study uncovered few, if any, issues. One thing researchers noticed was a longer than desired switching time during the coloration process. This would be worked on to be shortened in later iterations of the process, but is not a major concern, especially when considering the success of the study over the currently available technology.

Chenchen Bian, Jinhui Wang, Huanhuan Liu, Yin Yan, Ping Zhang, Weilong Yang, Sensen Jia, Xiaodan Guo and Goufa Cai of the Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology at the School of Materials and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Application at the Henan University contributed to this research.

The National Natural Science Foundation of China made this work possible.

##

About Nano Research

Nano Research is a peer-reviewed, international and interdisciplinary research journal, publishes all aspects of nano science and technology, featured in rapid review and fast publishing, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After 15 years of development, it has become one of the most influential academic journals in the nano field. In 2023 InCites Journal Citation Reports, Nano Research has an Impact Factor of 9.9, the total cites reached 35645, ranking first in China's international academic journals, and the number of highly cited papers reached 194, ranked among the top 1.8% of 8769 academic journals.

About SciOpen

SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal's development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.