Chromosomal Chaos Spurs Leukemia Treatment Breakthrough

German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ)

Chromosomal instability plays a crucial role in the progression of cancer: it shapes the properties of tumor cells and drives the development of therapy resistance. Scientists from the German Cancer Research Center (DKFZ), the Heidelberg Stem Cell Institute HI-STEM* and the European Molecular Biology Laboratory (EMBL) used state-of-the-art single-cell analysis methods to analyze the cellular heterogeneity of a specific form of acute myeloid leukemia. Their data show how genetic and non-genetic factors determine the functional heterogeneity of blood cancer cells and reveal new therapeutic targets.

In particular, under the selection pressure of cancer therapies, tumor cells undergo a veritable evolution to adapt to the changing conditions – and often escape the effects of therapy as a result. This evolution under therapeutic pressure is driven by a combination of genetic changes and non-genetic influences. Epigenetic modifications and changes in the transcriptome play a central role here, promoting the adaptation and activation of proliferation and survival programs.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.