Heart Implant Innovation Wins MIT Sloan Health Prize

Massachusetts Institute of Technology

An MIT startup's personalized heart implants, designed to help prevent strokes, won this year's MIT Sloan Healthcare Innovation Prize (SHIP) on Thursday.

Spheric Bio's implants grow inside the body once injected, to fit within the patient's unique anatomy. This could improve stroke prevention because existing implants are one-size-fits-all devices that can fail to fully block the most at-risk regions, leading to leakages and other complications.

"Our mission is to transform stroke prevention by building personalized medical devices directly inside patients' hearts," said Connor Verheyen PhD '23, a postdoc in the Harvard-MIT Program in Health Sciences and Technology (HST), who made the winning pitch.

Verheyen's co-founders are MIT Associate Professor Ellen Roche and HST postdoc Markus Horvath PhD '22.

Spheric Bio was one of seven teams that pitched their solution at the event, which was held in the MIT Media Lab and kicked off the MIT Sloan Healthcare and BioInnovations Conference.

Spheric took home the event's $25,000 first-place prize. The second-place prize went to nurtur, another MIT alumnus-founded startup, that has developed an artificial intelligence-powered platform designed to detect and prevent postpartum depression. Last summer, nurtur participated in the delta v startup accelerator program organized by the Martin Trust Center for MIT Entrepreneurship.

The audience choice award was given to Merunova, which is using AI and MRI diagnostics to improve the diagnosis and treatment of spinal cord disorders. Merunova was co-founded by Dheera Ananthakrishnan, a former spine surgeon who completed an executive MBA from the MIT Sloan School of Management in 2023.

Personalized stroke prevention

Spheric Bio's first implants aim to solve the problem of atrial fibrillation, a condition that causes areas of the heart to beat irregularly and rapidly, leading to a dramatic increase in stroke risk. The problem begins when blood pools and clots in the heart. Those clots then move to the brain and cause a stroke.

"This is a problem I've witnessed firsthand in my family," says Verheyen. "It's so common that millions of families around the world have had to experience a loved one go through a stroke as well."

Patients with atrial fibrillation today can either go on blood thinners, in many cases for years or even life, or undergo a procedure in which surgeons insert a device into the heart to close off an area known as the left atrial appendage, where about 90 percent of such originate.

The implants on the market today for that procedure are typically prefabricated metal devices that don't account for the wide variations seen in patient heart anatomy. Verheyen says up to half of the devices fail to seal the appendage. They can also lead to complications and complex care pathways designed to manage those shortcomings.

"There's a fundamental mismatch between the devices available and what human patients actually look like," says Verheyen. "Humans are infinitely variable in shape and size, and these tissues in particular are really soft, complex, delicate tissues. It leaves you with a pretty profound incompatibility."

Spheric Bio's implants are designed to conform to a patient's anatomy like water filling a glass. The implant is made of biomaterials developed over years of research at MIT. They are delivered through a catheter and then expand and self-heal to custom fit the patient.

"This gives us complete closure of the appendage for every patient, every time," said Verheyen, who has successfully tested the device in animals. "It also allows us to reduce device-related complications and simplifies deployment for operators."

Verheyen conducted his PhD work on medical imaging and medical physics in Roche's lab. Roche is also the associate head of Department of Mechanical Engineering at MIT.

Innovations for impact

The 23rd annual pitch competition offered anyone interested in health care innovation a look at the promising new solutions being developed at universities. The event is open to all early-stage health care startups with at least one student or recent graduate co-founder.

The event was the result of a months-long process in which more than 100 applicants were whittled down over the course of three rounds by a group of 20 judges.

The final competition also kicked off the MIT Sloan Healthcare and BioInnovations Conference, which took place Feb. 27 and 28. This year's conference was titled From Innovation to Impact: The Changing Face of Healthcare, and featured keynotes with health care industry veterans including Chris Boerner, the CEO of Bristole Myers Squibb, and James Davis, the CEO of Quest Diagnostics.

The competition's keynote was delivered by Iterative Health CEO Jonathan Ng, who was a finalist in the competition in 2017. Ng expressed admiration for this year's contestants.

"It's inspiring to look around and see people who want to change the world," said Ng, whose company is using cameras and AI to improve colorectal cancer screening. "There's a lot of easier industries to work in, but MIT is such a good place to find your tribe: to find people who want to make the same sort of impact on the world as you."

/University Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.