3 min read

AS16-116-18653 (23 April 1972) — Astronaut Charles M. Duke Jr., Apollo 16 lunar module pilot, stands at a big rock adjacent (south) to the huge "House Rock" (barely out of view at right edge). Note shadow at extreme right center where the two moon-exploring crew members of the mission sampled what they referred to as the "east-by-west split of House Rock" or the open space between this rock and "House Rock". At their post-mission press conference, the crewmen expressed the opinion that this rock was once a part of "House Rock" which had broken away. The two sampled the big boulder seen here also. Duke has a sample bag in his hand, and a lunar surface rake leans against the large boulder. Astronaut John W. Young, commander, exposed this view with a color magazine in his 70mm Hasselblad camera. While astronauts Young and Duke descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon, astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.
NASA
The goals of the working group were to:
- Endorse or recommend changes to H2S SMAC levels that had been proposed by the JSC Toxicology Laboratory
- Review a draft H2S SMAC manuscript prepared by the JSC Toxicology Laboratory
- Provide any additional insight and consideration regarding H2S toxicity that should be considered for spaceflight programs
The NASA Spaceflight Human-System Standard (NASA-STD-3001) establishes that vehicle systems shall limit atmospheric contamination below established limits [V2 6050] Atmosphere Contamination Limit. The JSC Toxicology Laboratory maintains the JSC 20584 Spacecraft Maximum Allowable Concentrations for Airborne Contaminants document, which contains a table of SMAC values for a variety of chemicals including carbon monoxide, ammonia, heavy metals, and a wide range of volatile organic compounds. SMACs are documented for 1-hr, 24-hr, 7-day, 30-day, 180-day, and 1000-day time spans for each chemical, and express the maximum concentration to which spaceflight crew can be exposed for that duration.
/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.