Under the leadership of the DTU National Food Institute, researchers from 11 European universities, institutions and knowledge organizations have developed a new method for analyzing data from wastewater monitoring. The method can help identify whether disease-causing bacteria, viruses, and antimicrobial resistance come from humans, animals, industry, or the environment. Potentially, thousands of threats can be detected simultaneously, including antimicrobial resistance and cholera bacteria, which could help prevent disease outbreaks from escalating into epidemics. The research has been published in the prestigious scientific journal Nature Communications.
The researchers analyzed samples collected over three years from seven wastewater treatment plants in five major European cities: Bologna, Budapest, Copenhagen, Rome, and Rotterdam.
"Untreated wastewater is increasingly becoming a vital source for anonymous health and disease surveillance in large urban populations. However, extracting valuable data from it is not straightforward, as the wastewater contains both known and unknown bacteria from a variety of sources, such as humans, plants, animals, rainwater, dishwashing, etc.," says corresponding author of the research paper, Assistant Professor Patrick Munk from DTU National Food Institute.
Additionally, the contents of the wastewater can vary due to seasonal temperature changes.
These challenges are what the researchers are beginning to overcome using a new computer program.
"Our research shows significant potential in metagenomics-based wastewater monitoring. While this method is more expensive than PCR testing, which proved highly effective during the COVID-19 pandemic, PCR only screens for one threat at a time. Metagenomics-based wastewater monitoring can assess thousands of threats simultaneously. Additionally, the value of each individual sample increases the more samples are collected over time, as historical data enhances the value of new analyses," says Professor Frank Aarestrup, who leads the Research Group for Genetic Epidemiology at DTU National Food Institute and co-authored the article.
A monitoring system could be envisioned that combines metagenomics-based wastewater surveillance with PCR tests for specific threats that authorities deem likely to emerge.
The study is particularly relevant because an EU directive mandates that all major European cities begin monitoring antimicrobial resistance in wastewater. In Denmark, Statens Serum Institut is leading a large European collaboration on the implementation of this wastewater monitoring.