New tool at BESSY II for chirality investigations

Helmholtz-Zentrum Berlin für Materialien und Energie

"ALICE II has an unique capability, namely to allow for magnetic X-ray scattering in reciprocal space using a new large area detector, and this at up to the highest allowed reflected angles", Radu explains. To demonstrate the performance of the new instrument, the scientists examined a polished sample of Cu2OSeO3.

Mott-Insulator examined

Cu2OSeO3 is a Mott insulator with a cubic crystal structure which lacks inversion symmetry. This results in the development of helical magnetic ordering: magnetic spins rotating clock- or anticlock- wise with respect to the propagation direction. The magnetic ion is Copper (Cu) and the chirality of the magnetic texture cannot be reversed by external stimuli. The sample quality, which is of key importance, was assured by Dr. Aisha Aqueel.

Novel way to investigate magnetic textures

The scientists could observe helical and conical magnetic modulations as satellite reflections around the specular peak via x-ray magnetic scattering with circularly polarized x-rays. "What's more: the chirality information of the underlying spin textures is encoded as its dichroic intensity", Radu points out. These results pave a novel way to investigate chiral and polar magnetic textures with ultimate spatial resolution and at the very short time scales typical to synchrotron X-ray experiments, and expand a range of materials for the topological spintronics via fast screening of candidate materials.

Note: The project was funded by BMBF and HZB

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.