NYU Abu Dhabi Researchers Discover Why COVID-19 Affects People Differently

New York University

Abu Dhabi, UAE (June 12): A team of researchers at NYU Abu Dhabi, led by Associate Professor of Biology Youssef Idaghdour and working in collaboration with clinicians at several Abu Dhabi hospitals, investigated the association between microRNAs, a class of small RNA molecules that regulate genes, and COVID-19 severity among 259 unvaccinated COVID-19 patients living in Abu Dhabi. The team identified microRNAs that are associated with a weakened immune response and admission to ICU.

During this process, they created the first genomic picture of the architecture of blood microRNAs in unvaccinated COVID-19 patients from the Middle East, North Africa, and South Asia regions whose populations are consistently underrepresented in genomics research. The researchers identified changes in microRNAs at the early stages of infection that are associated with specific blood traits and immune cell death, allowing the virus to evade the immune system and proliferate.

The results of the system's genetics study demonstrate that a patient's genetic make-up affects immune function and disease severity, offering new insights into how patient prognosis and treatment can be improved. Given the diversity of the sample, there is promise that these findings can be applied to approximately thirty percent of the world's population who reside in the MENA region and South Asia.

In the study titled Systems genetics identifies miRNA‑mediated regulation of host response in COVID‑19 published in the journal Human Genomics¸ the research team presents the results of the analysis of multiple omics datasets—genotypes, miRNA, and mRNA expression of patients at the time of hospital admission, combined with phenotypes from electronic health records. The researchers analyzed 62 clinical variables and expression levels of 632 miRNAs measured at hospital admission, as well as identified 97 miRNAs associated with eight blood phenotypes significantly associated with ICU admission.

"These findings improve our understanding of why some patients withstand COVID-19 better than others," said Idaghdour. "This study demonstrates that microRNAs are promising biomarkers for disease severity, more broadly, and targets for therapeutic interventions. The methods of this study can be applied to other populations to further our understanding of how gene regulation can serve as a core mechanism that impacts COVID-19 and, potentially, severity of other infections."

About NYU Abu Dhabi

www.nyuad.nyu.edu

NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective program with majors in the sciences, engineering, social sciences, arts, and humanities with a world center for advanced research. Its campus enables students to succeed in an increasingly interdependent world, and to advance cooperation and progress on humanity's shared challenges. NYU Abu Dhabi's high-achieving students have come from some 125 countries and speak over 100 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.