New quantum photonic processor uses entanglement to protect itself from errors. The feat is published in Nature Physics.
In today's digital infrastructure, the data-bits we use to send and process information can either be 0 or 1. Being able to correct possible errors that may occur in computations using these bits is a vital part of information processing and communication systems. But a quantum computer uses quantum bits, which can be a kind of mixture of 0 and 1, known as quantum super-position. This mixture is vital to their power - but it makes error correction far more complicated.
Researchers from DTU Fotonik have co-created the largest and most complex photonic quantum information processor to date – on a microchip. It uses single particles of light as its quantum bits, and demonstrates a variety of error-correction protocols with photonic quantum bits for the first time.
"We made a new optical microchip that processes quantum information in such a way that it can protect itself from errors using entanglement. We used a novel design to implement error correction schemes, and verified that they work effectively on our photonic platform," says Jeremy Adcock, postdoc at DTU Fotonik and co-author of the Nature Physics paper.