Purdue Researchers Use Viruses to Boost Cancer Therapy Delivery

Purdue University

WEST LAFAYETTE, Ind. — A researcher in Purdue University's College of Science is developing a patent-pending platform technology that mimics the dual-layer structure of viruses to deliver nucleic acid (NA)-based therapies to targeted cancer cells.

David Thompson leads a team developing the carrier system called LENN. He is a professor in the James Tarpo Jr. and Margaret Tarpo Department of Chemistry and on the faculty of the Purdue Institute for Cancer Research and the Purdue Institute for Drug Discovery.

"LENN comprises two protective layers. The inner shell condenses the nucleic acid; the outer shell protects it from the immune system so it can circulate freely and target cancer cells," he said. "We're mimicking the strategies of viral particles that have been doing this effectively for millions of years."

Thompson and his team, including postdoctoral researcher Aayush Aayush, used LENN to deliver NA-based therapies to bladder cancer cells. Their research has been published in the peer-reviewed journal Biomacromolecules.

"The data shows our agile nanocarrier is flexible in its targeting ability, cargo size and disassembly kinetics," Aayush said. "It provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible and highly tunable vehicle capable of targeting a variety of cells depending on their tumor-specific surface markers."

Thompson disclosed the system to the Purdue Innovates Office of Technology Commercialization

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.