Research Reveals Epigenetic Cause for EGFR Lung Cancer Therapy Resistance

Study Title: Mammalian SWI/SNF chromatin remodeling complexes promote tyrosine kinase inhibitor resistance in EGFR-mutant lung cancer

Publication: Cancer Cell

Dana-Farber Cancer Institute Senior and Lead Authors: Cigall Kadoch, PhD; Claudia Gentile, PhD; Akshay Sankar

Study Summary:

When lung cancers driven by mutations in the EGFR gene become resistant to osimertinib or other targeted therapies, epigenetic changes, rather than genetic changes, are often to blame. In a new study in Cancer Cell, researchers at the Dana-Farber Cancer Institute and Yale Cancer Center show that the main source of these changes are mSWI/SNF chromatin remodeling complexes, which alter gene activity by changing DNA architecture. In a series of experiments in cellular systems and animal models, the researchers found that blocking mSWI/SNF complexes - either chemically or genetically - reversed resistance to osimertinib in a subset of EGFR-mutant lung tumors. The findings suggest that mSWI/SNF-disrupting drugs, particularly SMARCA4/2 ATPase inhibitors, may offer a way to restore the potency of osimertinib in these tumors.

Impact:

In certain EGFR-mutant lung tumors that are resistant to osimertinib, treatment with mSWI/SNF inhibitors, now in the clinic in Phase I trials, may reinstate Osimertinib sensitivity.

Funding:

The research was supported by the National Institutes of Health; a Yale Cancer Center pilot grant; the Helen Gurley Brown Presidential Initiative at Dana-Farber; a Fundacion Ramon Areces Life and Matter Sciences Postdoctoral Fellowship; and the Howard Hughes Medical Institute.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.