8 min read
Faculty Advisors:
Dr. Tom Bell, Woods Hole Oceanographic Institution
Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
Graduate Mentor:
Kelby Kramer, Massachusetts Institute of Technology
Kelby Kramer, Graduate Mentor
Lucas DiSilvestro
Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
Lucas DiSilvestro
Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.
Atticus Cummings
Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
Atticus Cummings