"The results indicated a significant increase in cumulative t-Cys levels and the total number of t-Cys residues in aging and aged mice proteomes compared to young groups."
BUFFALO, NY- August 27, 2024 – A new research perspective was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science), Volume 16, Issue 15 on July 25, 2024, entitled, "Trioxidized cysteine and aging: a molecular binomial that extends far beyond classical proteinopathic paradigms."
Oxidative stress (OS) - characterized by an imbalance between oxidants and antioxidants - leads to the formation of oxidative posttranslational modifications (PTMs), including those involving cysteine (Cys) residues in aging proteomes. Specifically, the formation of trioxidized Cys (t-Cys) results in permanent protein damage. Recent findings in rodents have revealed that irregular regulation of t-Cys residues in the aging proteome disrupts homeostatic phosphorylation signaling, leading to alterations in proteins similar to those caused by phosphorylated serine (p-Ser) residues.
In this perspective, researchers José Antonio Sánchez Milán, María Mulet, Aida Serra and Xavier Gallart-Palau from University Hospital Arnau de Vilanova (HUAV) and University of Lleida (UdL), present novel data, validating the increase of specific t-Cys sites associated with aging in a blood-related circulating human proteome.
"The scope and findings included here support the hypothesis that t-Cys residues may serve as important mechanistic and biological markers, warranting further exploration in the context of unhealthy aging and age-related major diseases."
Continue reading: DOI: https://doi.org/10.18632/aging.206036