www.psu.edu/news/materials-research-institute/story/tiny-bubbles-could-reveal-immune-cell-secrets-and-improve" target="_blank">developed an ultrasound imaging technique to visualize the movement of a type of immune cell called a macrophage, which works to heal wounds and fight infections in the body. With a five-year, $3.2 million grant from the National Cancer Institute, the team will now apply the technology to monitor the transport of genetically engineered, cancer-fighting macrophages into brain tumors. Simultaneously, they will use ultrasound to deliver drugs that increase the effectiveness of the macrophages, "supercharging" their potential to attack brain cancer cells.
"Macrophages are being studied now for their ability to localize to a tumor and treat the cancer, using cells that have been genetically modified with a chimeric antigen receptor to help them specifically recognize malignant cells," said principal investigator Scott Medina, the William and Wendy Korb Early Career Associate Professor of Biomedical Engineering. "While our first step was to track where the general immune cells were going in the body, we now want to translate this work to visualize where our bioengineered macrophage therapies are going within the body. Are they moving toward a tumor or somewhere we don't want them to go, where they may cause toxicity?"
Collaborators at the University of Wisconsin, under the leadership of co-principal investigator Igor Slukvin, professor of pathology, will develop the bioengineered macrophages. Inhye Kim, assistant research professor of biomedical engineering at Penn State, will then use nanoparticle contrast agents paired with diagnostic ultrasound to visualize and track the macrophages, first in a silicone tissue model, then later, in a rodent model. Kim led the development of the contrast agents, which were published in Small in July 2023.