Wearable Air Curtain Blocks 99.8% of Aerosols, Kills Viruses

University of Michigan

Headworn tech from U-M startup could protect agricultural and industrial workers from airborne pathogens

The Clack Research Group

An air curtain shooting down from the brim of a hard hat can prevent 99.8% of aerosols from reaching a worker's face. The technology, created by University of Michigan startup Taza Aya, potentially offers a new protection option for workers in industries where respiratory disease transmission is a concern.

Independent, third-party testing of Taza Aya's device showed the effectiveness of the air curtain, curved to encircle the face, coming from nozzles at the hat's brim. But for the air curtain to effectively protect against pathogens in the room, it must first be cleansed of pathogens itself. Previous research by the group of Taza Aya co-founder Herek Clack, U-M associate professor of civil and environmental engineering, showed that their method can remove and kill 99% of airborne viruses in farm and laboratory settings.

"Our air curtain technology is precisely designed to protect wearers from airborne infectious pathogens, using treated air as a barrier in which any pathogens present have been inactivated so that they are no longer able to infect you if you breathe them in," Clack said. "It's virtually unheard of-our level of protection against airborne germs, especially when combined with the improved ergonomics it also provides."

Clack stands behind Chaidez with a hand to the back of the helmet, which resembles a white hard hat, as Chaidez holds it at the sides.
Herek Clack, a U-M associate professor of civil and environmental engineering and co-founder of Taza Aya, helps Michigan Turkey Producers employee, Blanca Chaidez, adjust a helmet that will protect her from infectious aerosols with an air curtain rather than a face mask. Image credit: Jeremy Little, Michigan Engineering

Fire has been used throughout history for sterilization, and while we might not usually think of it this way, it's what's known as a thermal plasma. Nonthermal, or cold, plasmas are made of highly energetic, electrically charged molecules and molecular fragments that achieve a similar effect without the heat. Those ions and molecules stabilize quickly, becoming ordinary air before reaching the curtain nozzles.

Chaidez wears a white coat and her air curtain headgear, resembling a hard hat, as she prepares to don a blue apron.
Michigan Turkey Producers employee, Blanca Chaidez, wears Taza Aya's Worker Wearable Protection equipment as she prepares for her work shift. Image credit: Jeremy Little, Michigan Engineering

Taza Aya's prototype features a backpack, weighing roughly 10 pounds, that houses the nonthermal plasma module, air handler, electronics and the unit's battery pack. The handler draws air into the module, where it's treated before flowing to the air curtain's nozzle array.

Taza Aya's progress comes in the wake of the COVID-19 pandemic and in the midst of a summer when the U.S. Centers for Disease Control and Prevention have reported four cases of humans testing positive for bird flu. During the pandemic, agriculture suffered disruptions in meat production due to shortages in labor, which had a direct impact on prices, the availability of some products and the extended supply chain.

In recent months, Taza Aya has conducted user experience testing with workers at Michigan Turkey Producers in Wyoming, Michigan, a processing plant that practices the humane handling of birds. The plant is home to hundreds of workers, many of them coming into direct contact with turkeys during their work day.

To date, paper masks have been the main strategy for protecting employees in such large-scale agriculture productions. But on a noisy production line, where many workers speak English as a second language, masks further reduce the ability of workers to communicate by muffling voices and hiding facial clues.

An animation screenshot shows a simulated worker wearing a hardhat connected by two air tubes to a backpack that houses the device's cold plasma module. Air is shown flowing downward from the brim of the hat.
Taza Aya's Worker Wearable Protection device keeps airborne virus particles from reaching a workers mouth and nose with an air curtain. That air is pre-treated to kill any viruses. Image credit: Jeremy Little, Michigan Engineering
An animation screenshot shows a simulated worker wearing a hardhat connected by two air tubes to a backpack that houses the device's cold plasma module. Air is shown flowing downward from the brim of the hat.
Taza Aya's Worker Wearable Protection device keeps airborne virus particles from reaching a workers mouth and nose with an air curtain. That air is pre-treated to kill any viruses. Image credit: Jeremy Little, Michigan Engineering
An animation screenshot shows a simulated worker wearing a hardhat connected by two air tubes to a backpack that houses the device's cold plasma module. Air is shown flowing downward from the brim of the hat.
An animation screenshot shows a simulated worker wearing a hardhat connected by two air tubes to a backpack that houses the device's cold plasma module. Air is shown flowing downward from the brim of the hat.

"During COVID, it was a problem for many plants-the masks were needed, but they prevented good communication with our associates," said Tina Conklin, Michigan Turkey's vice president of technical services.

In addition, the effectiveness of masks is reliant on a tight seal over the mouth and noise to ensure proper filtration, which can change minute to minute during a workday. Masks can also fog up safety goggles, and they have to be removed for workers to eat. Taza Aya's technology avoids all of those problems.

As a researcher at U-M, Clack spent years exploring the use of nonthermal plasma to protect livestock. With the arrival of COVID-19 in early 2020, he quickly pivoted to how the technology might be used for personal protection from airborne pathogens.

In October of that year, Taza Aya was named an awardee in the Invisible Shield QuickFire Challenge-a competition created by Johnson & Johnson Innovation in cooperation with the U.S. Department of Health and Human Services. The program sought to encourage the development of technologies that could protect people from airborne viruses while having a minimal impact on daily life.

"We are pleased with the study results as we embark on this journey," said Alberto Elli, Taza Aya's CEO. "This real-world product and user testing experience will help us successfully launch the Worker Wearable in 2025."

Clack and the University of Michigan have a financial interest in Taza Aya.

/Public Release. This material from the originating organization/author(s) might be of the point-in-time nature, and edited for clarity, style and length. Mirage.News does not take institutional positions or sides, and all views, positions, and conclusions expressed herein are solely those of the author(s).View in full here.